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Classification is required for public disclosure.  Resources must be allocated into measured, 
indicated and inferred.  Reserves must be allocated into proven and probable.  A longstanding 
problem is the determination of a consistent and rational scheme to assign these categories.  We 
make a case for geometric criteria such as drillhole spacing backed up by an assessment of 
uncertainty with geostatistical techniques.  The choice of geometric criteria should be based on 
common practice for the deposit type, site-specific considerations and an expert judgment of 
other factors.  We recommend against the exclusive use of probabilities for classification.  An 
arbitrary choice of probabilistic criteria will often lead to unreasonably large or small volumes 
in each category.  Our advice is to directly apply geometric criteria and support them with 
probabilistic analysis.  The probabilistic analysis may cause the competent person to reconsider 
their geometric criteria, but the geometric criteria are used for disclosure.  Geometric criteria 
are transparent, easy-to-understand, and leave little room for mischief. 
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Introduction 

The intent of this paper is to discuss some details beyond the information contained in codes such 
as the JORC code, SAMREC code, SEC Industry Guide 7 and NI 43-101.  We are not proposing 
anything in contradiction with those codes.  Our case for geometric measures is a reasonable 
interpretation consistent with all of those codes.  There is a need for open discussion on actual 
numbers and procedures used for the classification of resources and reserves. 

Resources and reserves classification aims at providing the estimation of the grade of a volume 
with an assessment of its confidence.  Resources are classified in decreasing order of geological 
confidence as measured, indicated and inferred, whereas reserves are classified as proven and 
probable.  Reserves incorporate many modifying factors related to the environmental, social, 
financial and technological risk of mining. 

Classification is commonly performed on a block-by-block basis, but the volumes are chosen 
reasonably large and contiguous, since we often believe that our confidence in the grade should 
not change abruptly between adjacent blocks.  Many procedures for block-by-block classification 
lead to a slightly noisy map or a map with isolated regions around drillholes.  In some cases, 
classification changes abruptly from measured to inferred resources in adjacent blocks without a 
transitional indicated block as one might expect.  A posterior cleaning/smoothing of the 
classification may be required. 
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Geostatistics provides the best techniques available today to model heterogeneity and uncertainty 
in mineral deposits and petroleum reservoirs.  Early applications of geostatistical techniques were 
based on using the kriging variance as a measure of confidence (Blackwell, 1998; Diehl and 
David, 1982; Froidevaux, 1982; Royle, 1977).  The development of indicator techniques allowed 
the determination of the local distribution of uncertainty in the grade, which together with a 
change of support model provides a distribution of uncertainty at block support.  This can be used 
as a measure of the confidence for each block and be the base of a classification scheme 
(Froidevaux et al., 1986).  

Geostatistical simulation techniques provide an ability to predict uncertainty in multiple variables 
at any specified scale (Deutsch and Journel, 1998; Deutsch, 2002; Goovaerts, 1997; Wackernagel, 
2003).  It seems reasonable to base classification decisions on a probabilistic assessment of 
uncertainty provided by geostatistics.  We could use those probabilities for more than risk 
assessment and blending decisions.  There have been a number of papers advocating the use of 
probabilities for classification (Dohm, 2005), for example, measured may be defined as monthly 
production volumes that will be within 15% of their estimated grade with 90% probability.  
Indicated could be defined as yearly volumes that meet the same 15%/90% criteria.  This seems 
reasonable.  Geostatisticians understand that there is nothing particularly special about 
monthly/15%/90%, but those numbers are commonly mentioned.  These categories are assigned 
only within areas where we have a minimum level of geological confidence. 

Codes for public disclosure increasingly suggest a quantification of the error associated with the 
estimation of the grade for classification.  In many cases, mining companies consider a migration 
to a probabilistic classification approach to be compliant with the suggestion to quantify risk and 
uncertainty.  At a minimum, some probabilistic assessment is considered to support or back-up 
the chosen classification scheme.  Current classification techniques are often based on geometric 
criteria constrained by geological knowledge. 

Although, we support the increased use of geostatistics to measure uncertainty and risk, it seems 
more reasonable to base classification on geometric criteria supported by a measure of 
uncertainty.  This paper presents the basis for this assertion.  In a nutshell, we will develop the 
following points: 

1. Uncertainty is model-dependent and stationarity-dependent.  Uncertainty can be changed 
dramatically by minor changes to these decisions.  For example, high resolution rock type 
models can lead to large uncertainty in the grade of mineralized zones. 

2. Many parameters affect the distributions of uncertainty in a non-intuitive and non-
transparent manner.  For example, an increased nugget effect drastically reduces the 
uncertainty at a large mining scale. 

3. Uncertainty in the histogram and spatial continuity parameters is not commonly 
considered, but can have a large affect on large mining-scale uncertainty.  For example, 
considering the declustered histogram as known and fixed for geostatistical analysis can 
lead to a significant reduction in block uncertainty. 

4. Choosing the parameters of uncertainty for classification cannot be universal and is 
highly deposit specific.  For example, choosing relative uncertainty versus absolute 
uncertainty causes low grade regions to be very uncertain.  Moreover, certain deposit 
types have less uncertainty, but are not completely measured at large drillhole spacing. 
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We expand on these points and recommend a geometric approach to classification whereby 
drillhole spacing or the number of drillholes per unit area/volume is used for classification.  The 
choice of geometric criteria should be supported by geostatistical simulation and assessment of 
risk.  The transparency and openness of geometric criteria combined with the problem of directly 
using probabilistic statements are overwhelming practical considerations. 

Geometric Criteria 

Geometric measures such as drillhole spacing, drillhole density and closeness to the nearest 
drillhole are direct measures of the amount of data available.  Although seemingly simple, there 
are subtle differences in these geometric parameters and their calculation in presence of 
irregularly spaced data.  These measures will be defined and explained, then we discuss their 
calculation in presence of irregular spaced drillholes. 

Figure 1 shows an illustration of drillhole spacing, density and radius.  The relationships between 
these measures are presented.  The terms and units are given on Figure 1.  The relationship 
between drillhole spacing and density is clear: 
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The relationship to the radius from the drillhole is less clear.  Assuming that the drillhole radius 
should include everything at the particular spacing (see Figure 1): 
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It is not common to use the radius from a drillhole in mining applications; it is more common in 
petroleum applications with widely spaced wells.  This paper is aimed at classification in mining 
and we recommend drillhole spacing or drillhole density. 

The application to 3-D with deviated drillholes is more complex.  There are a number of ways 
that we could define the drillhole spacing, but a straightforward approach consists of defining the 
equivalent square drillhole spacing for the number of composites within some nominal 3-D 
volume, see Figure 2.  The volume defined in Figure 2 is a rectangular parallelepiped defined by 
LA, LB, and LC.  An ellipsoidal volume could be used.  The spacing of the composites is “c”.  
Considering the rectangular volume, the equivalent L is defined by: 
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where n is the number of composites found in the volume defined by LA, LB, and LC.  This 
calculation depends on the volume size and orientation.  No data are relocated; an equivalent 
regular spacing is calculated so that the number of data per unit volume is the same.  Sensitivity 
studies would have to be performed to establish robust and reasonable results.  This same concept 
can be applied to irregularly located vertical drillholes; however, we could use a simpler 2-D 
approach. 
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Figure 3 shows a sketch for the calculation of drillhole density in an irregular 2-D configuration 
of data.  The number of data within a window (defined by radius rs in the sketch) are counted 
(n=13 in the sketch) and divided by the area. 
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The calculation depends on the choice of rs.  The results will be smooth and locally imprecise if rs 
is too large.  The results will be too noisy if rs is too small.  Sensitivity studies would have to be 
performed to establish robust and reasonable results.  These measures could also incorporate 
anisotropy by defining anisotropic regions for the search of drillholes or samples in the 
neighborhood.  In general, the measure should be kept as simple as possible. 

There are many different geometric measures and methods of calculation.  The ideas documented 
in this section are adequate for the purposes of this paper.  Site specific considerations such as the 
calculation within geologic domains, anisotropy, and robustness of calculation in presence of 
irregular locations will have to be addressed.  A calculation of d or L (or L1/L2 in presence of 
anisotropy) is always possible.  Classification should be based on thresholds applied to these 
variables. 

The critical geometric thresholds for classification are based on (1) industry-standard practice in 
the country and geologic setting, (2) experience from similar deposit types, (3) a calibration with 
uncertainty quantified by geostatistical calculations (see later), and – most importantly –  (4) the 
expert judgment of the competent or qualified person.  Defining measured/indicated/inferred 
based on drillhole spacing thresholds by geologic domain is transparent and understandable. 

Other Criteria 

There are a number of criteria that fall between the geometric measures discussed above and the 
probabilistic measures that will be discussed in the next section.  One procedure includes multiple 
pass estimation with different search strategies – blocks that are estimated with a restricted search 
have greater confidence and blocks estimated with a larger second-pass search have less 
confidence.  Kriging variance or relative kriging variance could also be used – blocks with lower 
kriging variance have greater confidence than blocks with high kriging variance.  These criteria 
are reasonable in some contexts; however, in the context of this paper, we do not recommend 
them.  Purely geometric criteria are more easily understood and transparent.  Purely probabilistic 
criteria based on sound estimates of uncertainty are also understandable. 

Probabilistic Criteria 

There has been increased interest in applying probabilistic measures of uncertainty coming from 
(geo)statistics.  Geostatistical approaches lead to a model of uncertainty.  Although there is no 
objective true quantification of uncertainty, geostatistical models of uncertainty have been 
developed that provide reliable measures of uncertainty.  Uncertainty at the data scale is 
accomplished analytically with a variety of methods including a multivariate Gaussian model or 
indicator geostatistics.  Uncertainty can be defined numerically by simulation with a variety of 
methods including object-based simulation and multiple point statistics.  These techniques to 
establish the uncertainty at the data scale can be found in many software packages and discussed 
in many geostatistical books (Caers, 2005; Deutsch, 2002; Mallet, 2002). 
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Uncertainty at the scale of the data is rarely relevant for technical and economic decision making.  
The uncertainty at the data scale is scaled-up to a volume relevant to mining.  The scale-up 
procedure is almost universally simulation, that is, realizations of the variability at the small scale 
are simulated and then averaged to the relevant larger scale.  Distributions of uncertainty at the 
large scale are assembled by multiple realizations.  One hundred realizations is a common 
number because of the computational burden of simulation. 

Figure 4 shows a distribution of uncertainty represented as a histogram (solid line of frequencies).  
The schematic illustration also highlights three parameters often used in probabilistic 
classification schemes: (1) volume related to a production period, (2) precision, and (3) 
probability to be within the specified precision.  The volume need not be a contiguous block, but 
often it is chosen as a simple volume.  The second two parameters are one way to summarize 
uncertainty.  The meaning of these probability numbers may be unclear to practitioners. 

Probabilities have a precise meaning to statisticians.  They are proportions over a defined 
population.  The probabilistic statement that there is a 90% probability that the grade of a 
monthly production volume be within 15% of the estimated grade means that 90 out of 100 true 
grades of similarly classified monthly production volumes will be within their estimate plus or 
minus 15%.  Probabilities are checkable with actual proportions.  Prior to mining, we can only 
check the uncertainty at the scale of the drillhole samples; however, operating mines have the 
luxury of checking actual monthly production volumes. 

We were involved in this type of checking with a large oil sands mining operation in Northern 
Alberta.  We were provided with the surveyed topography at the end of each month for more than 
a year.  We extracted the uncertainty for those monthly volumes from the geostatistical model of 
uncertainty.  Then, the actual monthly grades of bitumen were checked against the uncertainty.  
We projected that 11 out of 12 months should be within the 11/12ths (91.7%) probability interval.  
The fairness or reasonableness of the probabilities was verified by actual production.  This is not 
always possible, but should be attempted. 

Some classification should be based on probabilities.  The petroleum resource/reserve 
classification scheme presented in NI 51-101 and the accompanying CIM guidelines mention 
specific probabilities.  There should be a 90% probability to exceed proven reserves and a 50% 
probability to exceed probable reserves.  This is less common in the mining industry – there is no 
mention of probabilities in codes such as the JORC code, SAMREC code, SEC Industry Guide 7 
and NI 43-101.  There is encouragement to quantify uncertainty where possible, but there is no 
mandate to use probabilistic criteria for classification. 

There are compelling reasons to use probabilistic criteria, particularly if the uncertainty has been 
verified by actual production: (1) the magnitude of the grades and the local configuration of data 
are accounted for, (2) the mining volume is explicitly accounted for, and (3) uncertainty is 
perceived as more objective and transportable to different deposits.  Despite these reasons, we 
believe that probabilistic results should be used to support or backup a choice of geometric 
criteria (within chosen geologic units).  This recommendation is based on a number of concerns 
with the direct use of probabilities for classification. 

Concern 1: Model Dependence 

Uncertainty is model dependent.  The modeling approach and model parameters evolve as the 
deposit is understood.  It is common for uncertainty to increase once the geological model is 
refined, detailed rock types and geologic units are established and spatial continuity measures are 
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reliably informed.  Thus, classification based on uncertainty could change drastically with 
additional drillholes and geostatistical study. 

Delineation drilling may be acquired with the purpose of proving-up or increasing the confidence 
in areas of the deposit.  If probabilistic criteria are used for classification, there is no fixed 
drillhole spacing that would ensure an area is measured or proven.  The classification could 
change as the geostatistical approach and modeling parameters are updated.  This provides a 
moving target for delineation, which is undesirable.  Clearly, there are times when the required 
drillhole spacing should be changed; for example, a smaller spacing may be warranted when the 
mineralization is found to be more erratic and discontinuous than first assumed.  The model 
dependent nature of probabilistic predictions leads to unwarranted reclassifications. 

Probabilities rely on stationarity that is difficult to establish early in resource evaluation.  In fact, 
a decision of stationarity, that is, how to group the data is difficult to make at any stage of 
resource evaluation.  The sensitivity of classification results to the decision of stationarity is a 
significant concern.  An example is shown to illustrate the point. 

Figure 5 shows 21 drillholes in an area 3000m by 3000m.  The statistical parameters in the 
shaded ellipse on the right side of the figure are the true statistical parameters for this area.  
Inference of reliable statistical parameters in presence of sparse data is an important point; 
however, the point being made in this example relates to the decision of stationarity.  The true 
statistical parameters were used.  The map in the lower left shows the predicted probability for 
the true value to be in the interval defined by the estimate +/- 50%.  There is a high probability 
near the drillholes and in high valued areas where the probability interval is wider. 

Figure 6 shows 169 more data – for a total of 190 data.  The gray shaded zone in the south central 
region of the location map (see upper left) was separated from the remaining low grade zone.  
The statistical parameters are shown in the shaded ellipse on the right side of the figure.  The map 
in the lower left shows the predicted probability for the true value to be in the interval defined by 
the estimate +/- 50%.  The probability has increased from Figure 5 because of the additional 
drilling.  Although there are nearly 10 times more drillholes, the probability for the truth to be 
within 50% of the estimate has decreased in 15.8% of the locations, see Figure 7. 

This example was not fixed to show an exaggerated sensitivity; it is very typical.  Geostatisticians 
know that uncertainty is model dependent and the uncertainty will change significantly as the 
modeling approach and parameters changes.  This has an unwarranted and unpredictable affect on 
probabilistic classification. 

Concern 2: Non-Transparent Parameters 

Many parameters affect the distributions of uncertainty in a non-intuitive and non-transparent 
manner.  Relatively minor changes in geostatistical parameters can affect probabilistic estimates.  
The nugget effect is an important parameter that can operate in a non-intuitive manner.  
Intuitively (for many people), an increased nugget effect entails increased short scale variability 
and increased uncertainty.  In practice, however, an increased nugget effect leads to a decrease in 
uncertainty because of averaging.  Uncertainty in large volumes decreases quickly when the 
nugget effect is high and/or the variogram range is short.  This makes statistical sense.  When the 
grades are very random they average out when large scales are considered. 

Figure 8 shows 104 drillholes.  Two variogram models were fit to the isotropic normal scores 
variograms at the bottom of the figure: with and without a nugget effect.  The variogram fit to the 
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experimental points is equally good in both cases.  Figure 9 shows one realization (of the 100 
created) for each variogram and the probability for blocks 4 grid nodes square to be within 50% 
of their estimate.  The probabilities are significantly higher when the realizations with a nugget 
effect are used, see Figure 10.  The mean probability increases from 53% to 61% by simply 
including a nugget effect in the variogram model. 

Classification could easily be arbitrarily changed by adjusting the variogram.  The nugget effect 
is an important parameter, but other parameters can be important.  The range and directions of 
anisotropy are sometimes important.  A zonal anisotropy can have a very large affect on 
uncertainty predictions.  The probability to be within an interval is not robust with respect to the 
variogram model. 

Concern 3: Parameter Uncertainty 

Uncertainty in the histogram and spatial continuity parameters is not commonly considered, but 
can have a large affect on large mining-scale uncertainty.  For example, considering the 
declustered histogram as known and fixed for geostatistical analysis can lead to less uncertainty.  
It is common practice to consider global statistical parameters as fixed.  A bootstrap procedure 
accounting for spatial correlation could be used to assess uncertainty in input parameters such as 
the mean.  That uncertainty could be transferred into the results of geostatistical simulation to 
provide a more realistic assessment of uncertainty. 

Figure 11 shows the histogram of data from the previous concern (see also Figure 8) with the 
uncertainty in the mean shown on the figure.  The standard deviation in the mean is 1.31 versus 
9.67 for the original data.  Although there are 104 drillholes, the variance only goes down by 
1/54.5 because of spatial correlation.  This reduction was calculated using the no-nugget effect 
variogram.  The results are nearly the same with the nugget effect variogram because most of the 
data are more than 40m apart.  The probability for the true value to be inside +/-50% of the 
estimates decreases by about 6% – from 0.53 to 0.50.  The increase in uncertainty (reduction of 
the probability to be in a fixed interval) is case dependent. 

Concern 4: Defining the Probabilistic Criteria 

The qualified/competent person chooses risk thresholds based on varied technical, economic, and 
managerial considerations.  The considerations are site-specific, but the uncertainty statements 
can appear as universal and independent of the deposit type.  The statement that there is greater 
than a 90% probability that the grade of monthly production volumes is within 15% of their 
estimated grades does not depend on the deposit type.  There is nothing special about 
90%/monthly/15%, but they seem reasonable. 

Choosing the parameters of uncertainty for classification must be customized for each deposit.  
For example, choosing relative uncertainty versus absolute uncertainty causes low grade regions 
to be very uncertain (see Figure 12).  Moreover, certain deposit types have less uncertainty, but 
cannot be considered as all measured. 

Figure 13 shows a histogram of probability for grade of quarterly production volumes to be 
within +/- 15% of their estimated grades.  These results are for a very large mineable area for an 
active oil sands mining operation in Northern Alberta.  The two modes on the distribution are for 
high grade and low grade areas.  The +/- 15% intervals are a lot narrower when the grade is low, 
therefore there is a lower probability to be inside that interval. 
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In the same oil sands example above, we can also observe that there is great sensitivity to the 
chosen probabilistic thresholds.  Suppose that a probability threshold of 90% is chosen to 
differentiate between measured and indicated resources, based on the same information in Figure 
13, this means that 25% of the deposit would be classified as measured.  Now if we relax this 
threshold to 85% then the amount of measured increases to 33%.  Further, the presence of a 
second mode near the 50% probability threshold implies that the sensitivity to a chosen 
probability threshold also applies to the amount of indicated/inferred resources calculated.  The 
classified resources can change significantly with slight changes in probabilistic thresholds. 

Methodology to Back up Geometric Criteria with Probabilistic Meaning 

Despite the four concerns discussed above, there is merit to validating geometric classification 
measures with a probabilistic meaning.  Probabilistic measures of uncertainty are provided 
through geostatistical simulation of multiple realizations.  A cross plot of the geometric measure 
and the probability to be within a certain level of precision provides a relationship between 
uncertainty and drillhole spacing.  Probabilities can be calculated from multiple realizations; 
often 100 realizations are used.  Figure 14 shows an example of such a plot wherein conditional 
quantiles are also illustrated.  These results are dependent on the conditioning data locations, and 
not on proposed data spacing. 

While stationarity and an uncertainty model are still required, we can propose a second method 
where we begin with an unconditional simulation at the required resolution and sample at the 
geometric spacing of interest. This permits different sample spacings, other than those from 
available data, to be considered under the same uncertainty model.  The following methodology is 
proposed: 

1. Consider a region that is nominally large relative to the data spacing.  Using the 
representative histogram and variogram (as analyzed from the data), generate an 
unconditional realization using geostatistical simulation. 

2. For a specific drillhole spacing (e.g. 100m), sample from the unconditional realization.  
This becomes conditioning data for the following steps: 

a. Generate a conditional simulation with the same reference histogram and 
variogram (as in Step 1), but using this sampled pseudo-data set.  Generate many 
realizations, say 100. 

b. Block average up the realizations to a volume that is representative of a 
production period of interest, such as monthly or quarterly. 

3. Assess the distribution of uncertainty in the block averaged grade at each location.  
Choose a precision level (e.g. +/- 15%) and calculate the probability to fall within this 
interval.  This assumes that level of precision is symmetric about the expected grade (or 
E-type estimate) at that location. 

4. Calculate the data spacing (or other geometric criteria) over the entire grid; this should 
require only the grid definition and the available drillhole data. 

5. Crossplot the probability to fall within the precision window about an estimate against 
the geometric criteria.  From this crossplot, we can also calculate for a given spacing or 
density: 

a. The expected probability to fall within the chosen precision level. 
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b. The 90% probability interval for these calculated probabilities. 

These five steps can be repeated many times, say 20 or 25, with the purpose of removing the 
influence of the initial conditioning data.  Expected statistics from the multiple runs could also be 
plotted against drillhole spacing or density.  Further, consideration of larger volumes will tend to 
shift the relationship between probability within an interval and spacing up the probability scale.  
This occurs as a result of the narrowing of the distribution of uncertainty as volume increases; this 
is not an unexpected result given the well understood volume variance relations.  Figure 15 shows 
a schematic and an example of the shift in this relationship with volume.  The example shows 
trend lines of the relationship, while the actual points are due to ergodic fluctuations from 
considering multiple sets of realizations. 

Recommendation 

Geometric criteria such as drillhole spacing or drillhole density are recommended for 
resource/reserve classification.  Distances are easily understood and transparent to all 
stakeholders.  Some subjectivity is required in the calculation of these geometric measures in 
presence of irregularly located data, but that is relatively minor.  Geostatistical realizations should 
be constructed to lend a clear probabilistic meaning to the chosen classification procedure.  The 
uncertainty for each category (measured, indicated and inferred) should be quantified on average 
(at the average spacing in the category) and at the geometric threshold (the maximum distance for 
the category).  These probabilistic statements could cause the competent/qualified person to 
reconsider their geometric choices.  If possible, the probabilities should be checked with actual 
production data. 

Geostatistics provides models of heterogeneity and uncertainty that are invaluable for 
resource/reserve evaluation.  The theoretical basis for geostatistics is sound.  The practice has 
evolved over the last 30 years to become an indispensable part of resource/reserve evaluation.  
We see no end to the utility of geostatistics.  It may be dangerous to make a case against the use 
of probabilistic measures for classification.  The recommendation against a purely probabilistic 
basis for classification is made on the basis of transparency.  There are too many areas of concern 
where uncertainty or uncertainty thresholds can lead to drastically different results.  The risk of 
public misunderstandings due to innocent mistakes or intentional mischief is high. 

Conclusions 

Uncertainty is inescapable and widespread.  There are many aspects of uncertainty including 
geologic uncertainty as a result of incomplete or widely-spaced data.  Resources calculated based 
on such information must be classified by confidence into categories such as measured, indicated 
and inferred prior to public disclosure.  There are many schemes for such classification.  We 
make a case for the use of geometric measures such as drillhole spacing.  The selection of 
distance thresholds should be based on local practice, similar deposits, site-specific 
considerations and uncertainty quantified by geostatistical procedures. 

Geostatistics provides important support information for the classification of resources and 
reserves.  We recommend against classification based on purely probabilistic criteria for a 
number of reasons including: (1) uncertainty depends on the choice of stationary geological 
populations and modeling procedures, (2) uncertainty is sensitive to non-intuitive parameter 
choices, (3) uncertainty can be increased greatly with the consideration of parameter uncertainty, 
and (4) the choice of parameters for probabilistic classification cannot be universal. 
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This paper will be aligned with the thinking of many practitioners.  Others will disagree.  There is 
no scientific proof of optimality that can be applied to resource/reserve classification.  The expert 
must make choices accounting for many factors. 
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Figure 1: schematic illustration of the different geometric measures of the amount of data: 
drillhole spacing, drillhole density and radius from drillhole. 

 

 

 

 
Figure 2: sketch showing a 3-D volume defined by LA, LB and LC.  The nominal spacing L is 
defined such that there are the same number of data in the 3-D volume.  The spacing of the 
composite data is denoted c in the sketch. 
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Figure 3: sketch showing the calculation of drillhole density in an irregular 2-D configuration of 
data.  The number of data within a window (defined by radius rs in the sketch) are counted (n=13 
in the sketch) and divided by the area. 

 

 

 

 
Figure 4: schematic illustration of the three parameters often used in probabilistic classification 
schemes: (1) volume related to a production period, (2) precision, and (3) probability to be within 
the specified precision. 
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Figure 5: 21 example data (upper left), statistical parameters – histogram and variogram (right) 
and resulting map of the probability to be within +/- 50% of the estimate (lower left). 
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Figure 6: more data (190 total) (upper left), statistical parameters for the low grade zone and the 
high grade zone  – histograms and variograms (right) and resulting map of the probability to be 
within +/- 50% of the estimate (lower left). 
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Figure 7: comparison of probability to be inside the +/- 50% interval with the sparse (21) data 
and the dense (190) data. 
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Figure 8: example dataset from an in situ heavy oil project: (a) the drillhole locations, (b) the 
grade, (c) variogram modeled with no nugget effect, and (d) variogram modeled with a nugget 
effect. 
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Figure 9: Simulated realization on the left and probability of scaled up 4 by 4 blocks to be inside 
the +/- 50% interval on the right.  The top (a) is with no nugget effect and the bottom (b) is with a 
nugget effect. 
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Figure 10: comparison of probability to be inside the +/- 50% interval with no nugget effect and 
with a nugget effect. 
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Figure 11: histogram of original data and uncertainty in the mean.  Note the standard deviation of 
the mean (1.31) versus that of the original data (9.67). 

 

 

 

 
Figure 12: comparison of uncertainty measures plotted against the local mean: absolute 
uncertainty (left) and relative uncertainty (right). 
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Figure 13: histogram of probability for grade of quarterly production volumes to be within +/- 
15% of the estimated grade. 
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Figure 14: crossplot (right) of the probability to be within +/-15% interval and drillhole spacing 
using conditional simulation results: Lines indicate conditional quantiles: average (solid black 
line), interquartile range (two large dashed blue lines), and the 90% probability interval (two fine 
dashed red lines). 

 

 

 
Figure 15: Schematic illustration of impact of volume on the relationship between the probability 
to be within +/-15% of the estimated grade and the drillhole spacing (left), and an example of this 
same relationship shown for a monthly, quarterly and global production scale (right). 


